

www.immunoway.com

PKA α/β/γ Rabbit pAb

CatalogNo: YT3749 Orthogonal Validated 💽

Key Features

Host Species Rabbit 	Reactivity Human,Mouse,Rat,Pig 	Applications WB,IHC,IF,ELISA 		
MW • 40kD (Observed)	Isotype • IgG			

Recommended Dilution Ratios

WB 1:500-1:2000 IHC 1:100-1:300 IF 1:200-1:1000 ELISA 1:20000 Not yet tested in other applications.

Storage

Storage*-15°C to -25°C/1 year(Do not lower than -25°C)FormulationLiquid in PBS containing 50% glycerol, 0.5% BSA and 0.02% sodium azide.

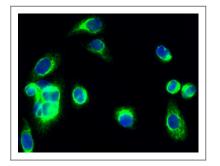
Basic Information

Clonality Polyclonal

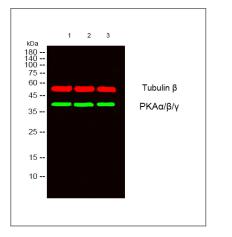
Immunogen Information

ImmunogenThe antiserum was produced against synthesized peptide derived from human PKA
alpha/beta CAT. AA range:166-215

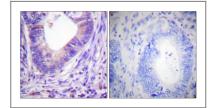
Specificity $PKA\alpha/\beta/\gamma$ cat Polyclonal Antibody detects endogenous levels of $PKA\alpha/\beta/\gamma$ cat protein.


Target Information

Gene name	PRKACA/PRKACB		
Protein Name	cAMP-dependent proteir Organism	n kinase catalytic subuni Gene ID	t alpha/beta UniProt ID
	Human	<u>5566; 5567;</u>	<u>P17612; P22694; P22612;</u>
	Mouse	<u>18747; 18749;</u>	
	Rat	<u>293508;</u>	<u>P27791; P68182;</u>
Cellular Localization	Translocates into the nu found in the cytoplasm. oocytes. Associated to r around the germinal ves Colocalizes with HSF1 in .; [Isoform 2]: Cell proje- acrosome . Expressed in Colocalizes with MROH2	Icleus (monomeric cataly Distributed throughout f nitochondrion as meiotic sicles (GV) at the immate n nuclear stress bodies (r ction, cilium, flagellum . n the midpiece region of B and TCP11 on the acro	drion . Membrane ; Lipid-anchor . ytic subunit). The inactive holoenzyme is the cytoplasm in meiotically incompetent c competence is acquired. Aggregates ure GV stage oocytes (By similarity). nSBs) upon heat shock (PubMed:21085490). Cytoplasmic vesicle, secretory vesicle, the sperm flagellum (PubMed:10906071). osome and tail regions in round spermatids status of the sperm (By similarity)
Tissue specificity		lsoform 2 is sperm-spec t detected in round sper	ific and is enriched in pachytene matids.
Function	Catalytic activity:ATP + a protein = ADP + a phosphoprotein.,enzyme regulation:Activated by cAMP.,Function:Phosphorylates a large number of substrates in the cytoplasm and the nucleus.,PTM:Asn-3 is partially deaminated to Asp giving rise to 2 major isoelectric variants, called CB and CA respectively.,similarity:Belongs to the protein kinase superfamily.,similarity:Belongs to the protein kinase superfamily. AGC Ser/Thr protein kinase family. cAMP subfamily.,similarity:Contains 1 AGC-kinase C-terminal domain.,similarity:Contains 1 protein kinase domain.,subcellular location:Translocates into the nucleus (monomeric catalytic subunit) (By similarity). The inactive holoenzyme is found in the cytoplasm.,subunit:A number of inactive tetrameric holoenzymes are produced by the combination of homo- or heterodimers of the different regulatory subunits associated with two catalytic subunits. cAMP causes the dissociation of the inactive holoenzyme into a dimer of regulatory subunits bound to four cAMP and two free monomeric catalytic subunits.,tissue specificity:Isoform 2 is sperm specific.,		


Validation Data

Jack Desc Desc <thdesc< th=""> Desc Desc <thd< th=""><th></th></thd<></thdesc<>	
Pactor	- 40
(b) p ^p XC _{eg1}	- 60
	-43
	- 78
	- 78
Pacto	-43


Sun, Xiao-Dong, et al. "Regulation of the firing activity by PKA-PKC-Src family kinases in cultured neurons of hypothalamic arcuate nucleus." Journal of neuroscience research 98.2 (2020): 384-403.

Immunofluorescence analysis of Hela cell. 1,PKA $\alpha/\beta/\gamma$ cat Polyclonal Antibody(green) was diluted at 1:200(4° overnight). 2, Goat Anti Rabbit Alexa Fluor 488 Catalog:RS3211 was diluted at 1:1000(room temperature, 50min). 3 DAPI(blue) 10min.

Western blot analysis of lysates from 1) 22RV1, 2) Hela , 3) COLO205 cells, (Green) primary antibody was diluted at 1:1000, 4°over night, secondary antibody(cat:RS23920)was diluted at 1:10000, 37° 1hour. (Red) Tubulin β Monoclonal Antibody(5G3) (cat:YM3030) antibody was diluted at 1:5000 as loading control, 4° over night, secondary antibody(cat:RS23710)was diluted at 1:10000, 37° 1hour.

Immunohistochemistry analysis of paraffin-embedded human colon carcinoma tissue, using PKA alpha/beta CAT Antibody. The picture on the right is blocked with the synthesized peptide.

Contact information

Orders:	order@immunoway.com
Support:	tech@immunoway.com
Telephone:	877-594-3616 (Toll Free), 408-747-0185
Website:	http://www.immunoway.com
Address:	2200 Ringwood Ave San Jose, CA 95131 USA

Please scan the QR code to access additional product information: **PKA** $\alpha/\beta/\gamma$ **Rabbit pAb**

For Research Use Only. Not for Use in Diagnostic Procedures.

Antibody | ELISA Kits | Protein | Reagents