

Wee 1 (phospho Ser53) Polyclonal Antibody

Catalog No: YP1064

Reactivity: Human; Mouse; Rat

Applications: IHC;IF;ELISA

Target: WEE1

Fields: >>Cell cycle;>>Human immunodeficiency virus 1 infection

Gene Name: WEE1

Protein Name: Wee1-like protein kinase

P30291

P47810

Human Gene Id: 7465

Human Swiss Prot

Idiliali Swiss Fiot

No:

Mouse Gene ld: 22390

Mouse Swiss Prot

No:

Rat Gene Id: 308937

Rat Swiss Prot No: Q63802

Immunogen: The antiserum was produced against synthesized peptide derived from human

WEE1 around the phosphorylation site of Ser53. AA range:19-68

Specificity: Phospho-Wee 1 (S53) Polyclonal Antibody detects endogenous levels of Wee 1

protein only when phosphorylated at S53.

Formulation : Liquid in PBS containing 50% glycerol, 0.5% BSA and 0.02% sodium azide.

Source: Polyclonal, Rabbit, IgG

Dilution : IHC 1:100 - 1:300. ELISA: 1:20000.. IF 1:50-200

1/3

Purification: The antibody was affinity-purified from rabbit antiserum by affinity-

chromatography using epitope-specific immunogen.

Concentration: 1 mg/ml

Storage Stability: -15°C to -25°C/1 year(Do not lower than -25°C)

Molecularweight: 72kD

Cell Pathway: Cell_Cycle_G1S;Cell_Cycle_G2M_DNA;

Background: WEE1 G2 checkpoint kinase(WEE1) Homo sapiens This gene encodes a

nuclear protein, which is a tyrosine kinase belonging to the Ser/Thr family of protein kinases. This protein catalyzes the inhibitory tyrosine phosphorylation of CDC2/cyclin B kinase, and appears to coordinate the transition between DNA replication and mitosis by protecting the nucleus from cytoplasmically activated

CDC2 kinase. [provided by RefSeq, Jul 2008],

Function : catalytic activity:ATP + a [protein]-L-tyrosine = ADP + a [protein]-L-tyrosine

phosphate.,cofactor:Binds 2 magnesium ions per subunit.,enzyme

regulation:Synthesis is increased during S and G2 phases, presumably by an increase in transcription; activity is decreased by phosphorylation during m phase. Protein levels fall in M phase as a result of decreased synthesis combined with degradation. Activity seems to be negatively regulated by phosphorylation upon entry into mitosis, although N-terminal phosphorylation might also regulate

the protein stability via protection from proteolysis or might regulate the

subcellular location.,function:May act as a negative regulator of entry into mitosis (G2 to M transition) by protecting the nucleus from cytoplasmically activated cyclin B1-complexed CDC2 before the onset of mitosis. Its activity increases

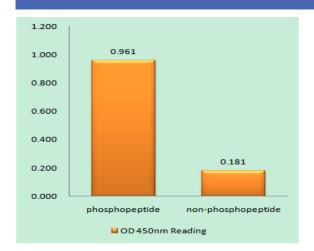
during S and G2 phases and decreases at M phase

Subcellular Nucleus.
Location:

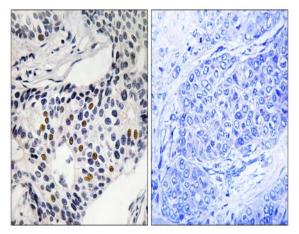
Expression: Amygdala, Blood, Epithelium, Human uterus endothel primary cell

culture, Placenta, Skin,

Sort : 24276


No4: 1

Host: Rabbit


Modifications : Phospho

Products Images

Enzyme-Linked Immunosorbent Assay (Phospho-ELISA) for Immunogen Phosphopeptide (Phospho-left) and Non-Phosphopeptide (Phospho-right), using WEE1 (Phospho-Ser53) Antibody

Immunohistochemistry analysis of paraffin-embedded human breast carcinoma, using WEE1 (Phospho-Ser53) Antibody. The picture on the right is blocked with the phospho peptide.